4 research outputs found

    Enhacement of microgrid technologies using various algorithms

    Get PDF
    The electric power systems around the globe are gradually shifting from conventional fossil fuel-based generating units to green renewable energy sources. The motivation behind this change is the environmental and economic concerns. Furthermore, the existing power systems are being overloaded day by day due to the continuously increasing population, which consequently led to the overloading of transformers, transmission, and distribution lines. Despite the overwhelming advantages of renewable energy sources, there are few major issues associated with them. For example, the injection and detachment of DGs into the current power system causes disparity among produced power along with connected load, thus distracting system’s equilibrium and causes unwanted voltage and frequency oscillations and overshoots. These oscillations and overshoots may cause the failure of connected equipment or power system if not properly controlled. The investigation as such challenges to improve the frequency and voltage, the islanded’s power regulation and connected MG under source and load changes, which contain classic and artificial intelligence techniques. Moreover, these techniques are used also for economic analysis. To evaluate the exhibitions of microgrid (MG) operations and sizing economic analysis acts as a significant tool. Optimization method is obligatory for sizing and operating an MG as reasonably as feasible. Diverse optimization advances remain pertained to microgrid to get optimal power flow and management

    Dynamic response and low voltage ride-through enhancement of brushless double-fed induction generator using Salp swarm optimization algorithm.

    No full text
    A brushless double-fed induction generator (BDFIG) has shown tremendous success in wind turbines due to its robust brushless design, smooth operation, and variable speed characteristics. However, the research regarding controlling of machine during low voltage ride through (LVRT) need greater attention as it may cause total disconnection of machine. In addition, the BDFIG based wind turbines must be capable of providing controlled amount of reactive power to the grid as per modern grid code requirements. Also, a suitable dynamic response of machine during both normal and fault conditions needs to be ensured. This paper, as such, attempts to provide reactive power to the grid by analytically calculating the decaying flux and developing a rotor side converter control scheme accordingly. Furthermore, the dynamic response and LVRT capability of the BDFIG is enhanced by using one of the very intelligent optimization algorithms called the Salp Swarm Algorithm (SSA). To prove the efficacy of the proposed control scheme, its performance is compared with that of the particle swan optimization (PSO) based controller in terms of limiting the fault current, regulating active and reactive power, and maintaining the stable operation of the power system under identical operating conditions. The simulation results show that the proposed control scheme significantly improves the dynamic response and LVRT capability of the developed BDFIG based wind energy conversion system; thus proves its essence and efficacy

    An Improved Gradient-Based Optimization Algorithm for Solving Complex Optimization Problems

    No full text
    In this paper, an improved gradient-based optimizer (IGBO) is proposed with the target of improving the performance and accuracy of the algorithm for solving complex optimization and engineering problems. The proposed IGBO has the added features of adjusting the best solution by adding inertia weight, fast convergence rate with modified parameters, as well as avoiding the local optima using a novel functional operator (G). These features make it feasible for solving the majority of the nonlinear optimization problems which is quite hard to achieve with the original version of GBO. The effectiveness and scalability of IGBO are evaluated using well-known benchmark functions. Moreover, the performance of the proposed algorithm is statistically analyzed using ANOVA analysis, and Holm–Bonferroni test. In addition, IGBO was assessed by solving well-known real-world problems. The results of benchmark functions show that the IGBO is very competitive, and superior compared to its competitors in finding the optimal solutions with high convergence and coverage. The results of the studied real optimization problems prove the superiority of the proposed algorithm in solving real optimization problems with difficult and indefinite search domains

    An Improved Gradient-Based Optimization Algorithm for Solving Complex Optimization Problems

    No full text
    In this paper, an improved gradient-based optimizer (IGBO) is proposed with the target of improving the performance and accuracy of the algorithm for solving complex optimization and engineering problems. The proposed IGBO has the added features of adjusting the best solution by adding inertia weight, fast convergence rate with modified parameters, as well as avoiding the local optima using a novel functional operator (G). These features make it feasible for solving the majority of the nonlinear optimization problems which is quite hard to achieve with the original version of GBO. The effectiveness and scalability of IGBO are evaluated using well-known benchmark functions. Moreover, the performance of the proposed algorithm is statistically analyzed using ANOVA analysis, and Holm–Bonferroni test. In addition, IGBO was assessed by solving well-known real-world problems. The results of benchmark functions show that the IGBO is very competitive, and superior compared to its competitors in finding the optimal solutions with high convergence and coverage. The results of the studied real optimization problems prove the superiority of the proposed algorithm in solving real optimization problems with difficult and indefinite search domains
    corecore